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Abstract—Work on voice sciences over recent decades has led to a proliferation of acoustic parameters that are used quite selectively

and are not always extracted in a similar fashion. With many independent teams working in different research areas, shared standards

become an essential safeguard to ensure compliance with state-of-the-art methods allowing appropriate comparison of results across

studies and potential integration and combination of extraction and recognition systems. In this paper we propose a basic standard

acoustic parameter set for various areas of automatic voice analysis, such as paralinguistic or clinical speech analysis. In contrast to a

large brute-force parameter set, we present a minimalistic set of voice parameters here. These were selected based on a) their

potential to index affective physiological changes in voice production, b) their proven value in former studies as well as their automatic

extractability, and c) their theoretical significance. The set is intended to provide a common baseline for evaluation of future research

and eliminate differences caused by varying parameter sets or even different implementations of the same parameters. Our

implementation is publicly available with the openSMILE toolkit. Comparative evaluations of the proposed feature set and large

baseline feature sets of INTERSPEECH challenges show a high performance of the proposed set in relation to its size.
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1 INTRODUCTION

INTEREST in the vocal expression of different affect states
has a long history with researchers working in various

fields of research ranging from psychiatry to engineering.
Psychiatrists have been attempting to diagnose affective

states. Psychologists and communication researchers have
been exploring the capacity of the voice to carry signals of
emotion. Linguists and phoneticians have been discovering
the role of affective pragmatic information in language pro-
duction and perception. More recently, computer scientists
and engineers have been attempting to automatically recog-
nize and manipulate speaker attitudes and emotions to ren-
der information technology more accessible and credible for
human users. Much of this research and development uses
the extraction of acoustic parameters from the speech signal
as amethod to understand the patterning of the vocal expres-
sion of different emotions and other affective dispositions
and processes. The underlying theoretical assumption is that
affective processes differentially change autonomic arousal
and the tension of the striate musculature and thereby affect
voice and speech production on the phonatory and articula-
tory level and that these changes can be estimated by differ-
ent parameters of the acoustic waveform [1].

Emotional cues conveyed in the voice have been empiri-
cally documented recently by the measurement of emotion-
differentiating parameters related to subglottal pressure,
transglottal airflow, and vocal fold vibration ([2], [3], [4], [5],
[6], [7], [8]). Mostly based on established procedures in pho-
netics and speech sciences to measure different aspects of
phonation and articulation in speech, researchers have used
a large number of acoustic parameters (see [9]; [10], for
overviews), including parameters in the Time domain (e.g.,
speech rate), the Frequency domain (e.g., fundamental fre-
quency (F0) or formant frequencies), the Amplitude domain
(e.g., intensity or energy), and the Spectral Energy domain
(e.g., relative energy in different frequency bands). Not
all of these parameters have been standardized in terms of
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their exact computation and thus results reported in the lit-
erature cannot always be easily compared. Even where
parameters have been extracted using widely used tools
like Praat [11], the exact settings used are not usually easily
and publicly accessible. Furthermore, different studies often
use sets of acoustic features that overlap only partially,
again rendering comparison of results across studies
exceedingly difficult and thus endangering the cumulation
of empirical evidence. The recent use of machine learning
algorithms for the recognition of affective states in speech
has led to a proliferation in the variety and quantity of
acoustic features employed, amounting often to several
thousand basic (low-level) and derived (functionals) param-
eters (e.g., [12]). While this profusion of parameters allows
to capture many acoustic characteristics in a comprehensive
and reliable manner, this comes at the cost of serious diffi-
culties in the interpretation of the underlying mechanisms.

However, applications such as the fine grained control of
emotionality in speech synthesis (cf. [13], [14]), or dimen-
sional approaches to emotion and mental state recognition
that seek to quantify arousal, valence or depression severity,
for example, along a single axis, all require a deeper under-
standing of the mechanism of production and perception of
emotion in humans. To reach this understanding, finding
and interpreting relevant acoustic parameters is crucial.
Thus, based on many previous findings in the area of
speech and voice analysis (e.g., [2], [9], [15], [16], [17], [18],
[19]), in this article the authors present a recommendation
for a minimalistic standard parameter set for the acoustic
analysis of speech and other vocal sounds. This standard
set is intended to encourage researchers in this area to adopt
it as a baseline and use it alongside any specific parameters
of particular interest to individual researchers or groups, to
allow replication of findings, comparison between studies
from different laboratories, and greater cumulative insight
from the efforts of different laboratories on vocal concomi-
tants of affective processes.

Moreover, large brute-forced feature sets are well known
to foster over-adaptation of classifiers to the training data in
machine learning problems, reducing their generalisation
capabilities to unseen (test) data (cf. [20]). Minimalistic
parameter sets might reduce this danger and lead to better
generalisation in cross-corpus experiments and ultimately
in real-world test scenarios. Further, as mentioned above,
the interpretation of the meaning of the parameters in a
minimalistic set is much easier than in large brute-forced
sets, where this is nearly impossible.

The remainder of this article is structured as follows: First,
Section 2 provides a brief overview of acoustic analyses in the
fields of psychology, phonetics, acoustics, and engineering
which are the basis of the recommendation proposed in this
article; next, in Section 3 we give a detailed description of the
acoustic parameters contained in the recommended parame-
ter set and the implementation thereof. The parameter set is
extensively evaluated on six well-known affective speech
databases and the classification performance is compared to
all high-dimensional brute-forced sets of the INTERSPEECH
Challenges on Emotion and Paralinguistics from 2009 to 2013
in Section 4. Final remarks on the parameters recommended
in this article and the classification performance relative to
other established sets as well as a discussion on the direction
of future research in this field are given in Section 5.

2 RELATED WORK

The minimalistic feature set proposed in this article is not
the first joint attempt to standardise acoustic parameter sets.
The CEICES initiative [21], for example, brought researchers
together who were working on identification of emotional
states from the voice. They combined the acoustic parame-
ters they had used in their individual work in a systematic
way in order to create large, brute-forced parameter sets,
and thereby identify individual parameters by a unique
naming (code) scheme. However, the exact implementation
of the individual parameters was not well standardised.
CEICES was a more engineering-driven “collector” appro-
ach where parameters which were successful in classifica-
tion experiments were all included, while GeMAPS is a
more interdisciplinary attempt to agree on a minimalistic
parameter set based on multiple source, interdisciplinary
evidence and theoretical significance or a few parameters.

Related programs for computation of acoustic parame-
ters, which are used by both linguists and computer science
researchers, include the popular Praat toolkit [11] or
Wavesurfer1.

This section gives a literature overview on studies where
parameters that form the basis of our recommendation have
been proposed and used for voice analysis and related
fields.

An early survey [15] and a recent overview [17] nicely
summarise a few decades of psychological literature on
affective speech research and concludes from the empirical
data presented that intensity (loudness), F0 (fundamental
frequency) mean, variability, and range, as well as the high
frequency content/energy of a speech signal show correla-
tions with prototypical vocal affective expressions such as
stress (Intensity, F0 mean), anger and sadness (all parame-
ters), and boredom (F0 variability and range), for example.
Further, speech and articulation rate was found to be impor-
tant for all emotional expressions. For the case of automatic
arousal recognition, [22] successfully builds an unsuper-
vised recognition framework with these descriptors.

Hammerschmidt and J€urgens[16] perform acoustic anal-
ysis of various fundamental frequency and harmonics
related parameters on a small set of emotional speech utter-
ances. The findings confirm that parameters related to F0
and spectral distribution are important cues to affective
speech content. Hammerschmidt and J€urgens[16] introduce
a ratio of the peak frequency to the fundamental frequency,
and use spectral roll-off points (called distribution of fre-
quency—DFB—there). More recently, [18], also validate the
discriminatory power of amplitude, pitch, and spectral pro-
file (tilt, balance, distribution) parameters for a larger set of
vocal emotional expressions.

Most studies, such as the two previously mentioned, deal
with the analysis of acoustic arousal and report fairly con-
sistent parameters which are cues to vocal arousal (nicely
summarised by [17]). The original findings that prosodic
parameters (F0 and intensity) are relevant for arousal have
been confirmed in many similar studies, such as [4], and
more automatic, machine learning based parameter evalua-
tion studies such as [23]. Regarding energy/intensity, [24]

1. http://www.speech.kth.se/wavesurfer/
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shows that a loudness measure, in which the signal energy
in various frequency bands is weighted according to the
human-hearing’s frequency sensitivity, is better correlated
to vocal affect dimensions than the simple signal energy
alone. Further, it is shown there, that spectral flux has the
overall best correlation for a single feature.

Recent work, such as [17] and [25], has dealt with other
dimensions besides arousal—in particular valence (both)
and the level of interest (LOI) [25]. For valence both of these
studies conclude that spectral shape parameters could be
important cues for vocal valence. Also, rhythm related
parameters, such as speaking rate are correlated with
valence. Tahon and Devillers [26] confirms the importance
of various spectral band energies, spectral slope, overall
intensity, and the variance of the fundamental frequency,
for the detection of angry speech. These parameters were
also reported to be important for cognitive load [27] and
psychomotor retardation [28].

Eyben et al. [25] also show a large importance of cepstral
parameters (Mel-Frequency-Cepstral-Coefficients—MFCC),
especially for LOI. These are closely related to spectral
shape parameters. Especially the lower order MFCC, resem-
ble spectral tilt (slope) measures to some extent over the full
range of the spectrum (first coefficient), or in various
smaller sub-bands (second and higher coefficient). The rele-
vance of spectral slope and shape is also investigated and
confirmed by [29], for example, and by [30] and [31].

In contrast to the findings in [15], for example, [25] sug-
gests that the relative importance of prosodic parameters as
well as voice quality parameters decreases in the case of
degraded audio conditions (background noise, reverbera-
tion), while the relative importance of spectral shape param-
eters increases. This is likely due to degraded accuracy in the
estimation of the prosodic parameters such as due to interfer-
ing harmonics or energy contributed by the noise compo-
nents. Overall, we believe that the lower order MFCC are
important to consider for various tasks and thus we include
MFCC 1-4 in the parameter set proposed in this article.

For automatic classification, large-scale brute-force acous-
tic parameter sets are used (e.g., [12], [32], [33], [34]). These
contain parameters which are easily and reliably computable
from acoustic signals. The general tendency in most studies
is, that larger parameter sets perform better [34]. This might
be due to the fact that in larger feature sets the ‘right’ features
are more likely present, or due to the fact that the combina-
tion of all features is necessary. Another reasonmight be that
with this many parameters (over 6,000 in some cases), the
machine learning methods simply over-adapt to the (rather)
small training data-sets. This is evident especially in cross-
corpus classification experiments, where the large feature
sets show poorer performance despite their higher perfor-
mance in intra-corpus evaluations [20]. As said, it is thus our
aim in this article to select relevant parameters, guided by
the findings of previous, related studies.

Besides vocal emotional expressions, there are numerous
other studies which deal with other vocal phenomena and
find similar and very related features to be important. [27], for
example, shows the importance of vowel-based formant fre-
quency statistics, and [5], for example, shows the usefulness
of glottal features when combined with prosodic features for
identification of depression in speech. Voice source features,

in particular the harmonic difference H1-H2, showed a con-
sistent decrease with increasing cognitive load, based on a
study employing manually corrected pitch estimates [35].
Recently, researchers have attempted to analyse further para-
linguistic characteristics of speech, ranging from age and gen-
der [36], to cognitive and physical load [37], for example.

Many automatically extracted brute-force parameter sets
neglect formant parameters due to difficulties in extracting
them reliably. For voice research and automatic classifica-
tion, they are very important though. Formants have been
shown sensitive to many forms of emotion and mental state
and formants give approximately state of the art cognitive
load classification results [27] and depression recognition
and assessment results [31], [38], and can provide competi-
tive emotion recognition performance [39] with a fraction of
the feature dimension of other systems. A basic set of for-
mant related features is thus included in our proposed set.

Due to the proven high importance of the fundamental
frequency (cf. [6]) and amplitude/intensity, a robust funda-
mental frequency measure and a pseudo-auditory loudness
measure are included in our proposed set. A wide variety
of statistics are applied to both parameters over time, in
order to capture distributional changes. To robustly repre-
sent the high frequency content and the spectral balance,
the descriptors alpha ratio, Hammarberg index, and spec-
tral slope are considered in this article. The vocal timbre is
encoded by Mel-Frequency Cepstral Coefficients, and the
quality of the vocal excitation signal by the period-to-period
jitter and shimmer of F0. To allow for vowel-based voice
research, and due to their proven relevance for certain tasks,
formant parameters are also included in the set.

3 ACOUSTIC PARAMETER RECOMMENDATION

The recommendation presented here has been conceived at
an interdisciplinary meeting of voice and speech scientists
in Geneva2 and further developed at Technische Universit€at
M€unchen (TUM). The choice of parameters has been guided
(and is justified) by three criteria: 1) the potential of an
acoustic parameter to index physiological changes in voice
production during affective processes, 2) the frequency and
success with which the parameter has been used in the past
literature (see Section 2), and 3) its theoretical significance
(see [1], [2]).

Two versions of the acoustic parameter set recommenda-
tion are proposed here: a minimalistic set of parameters,
which implements prosodic, excitation, vocal tract, and
spectral descriptors found to be most important in previous
work of the authors, and an extension to the minimalistic
set, which contains a small set of cepstral descriptors,
which—from the literature (e.g., [40])—are consistently
known to increase the accuracy of automatic affect recogni-
tion over a pure prosodic and spectral parameter set. Sev-
eral studies on automatic parameter selection, such as [23],
[24], suggest that the lower order MFCCs are more

2. Conference organised by K. Scherer, B. Schuller, and J. Sundberg
on September 1–2, 2013 at the Swiss Center of Affective Sciences in
Geneva on Measuring affect and emotion in vocal communication via acous-
tic feature extraction: State of the art, current research, and benchmarking
with the explicit aim of commonly working towards a recommendation
for a reference set of acoustic parameters to be broadly used in the field.
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important for affect and paralinguistic voice analysis tasks.
When looking at the underlying Discrete Cosine Transfor-
mation (DCT-II) base functions used when computing
MFCCs, it is evident that the lower order MFCC are related
to spectral tilt and the overall distribution of spectral
energy. Higher order MFCCs would reflect more fine
grained energy distributions, which are presumably more
important to identify phonetic content than non-verbal
voice attributes.

To encourage rapid community discussion on the param-
eter sets, as well as updates and additions from the commu-
nity, a wiki-page3 has been set up, where researchers can
quickly connect and discuss issues with the parameter set.
New ideas, if they are favoured by multiple contributors,
will then be implemented and after a certain number of
improvements or after a certain time frame, new versions of
the parameter sets will be released publicly.

In the following sections, we first give an overview over
the minimalistic parameter recommendation (Section 3.1),
and the extended parameter set (Section 3.2), before describ-
ing details of the algorithms used to compute the parame-
ters in Section 6.1.

3.1 Minimalistic Parameter Set

The minimalistic acoustic parameter set contains the follow-
ing compact set of 18 low-level descriptors (LLD), sorted by
parameter groups:

Frequency related parameters:

� Pitch, logarithmic F0 on a semitone frequency scale,
starting at 27.5 Hz (semitone 0).

� Jitter, deviations in individual consecutive F0 period
lengths.

� Formant 1, 2, and 3 frequency, centre frequency of
first, second, and third formant

� Formant 1, bandwidth of first formant.
Energy/Amplitude related parameters:

� Shimmer, difference of the peak amplitudes of con-
secutive F0 periods.

� Loudness, estimate of perceived signal intensity
from an auditory spectrum.

� Harmonics-to-noise ratio (HNR), relation of energy
in harmonic components to energy in noise-like
components.

Spectral (balance) parameters:

� Alpha Ratio, ratio of the summed energy from
50-1000 Hz and 1-5 kHz

� Hammarberg Index, ratio of the strongest energy
peak in the 0-2 kHz region to the strongest peak in
the 2–5 kHz region.

� Spectral Slope 0-500 Hz and 500-1500 Hz, linear
regression slope of the logarithmic power spectrum
within the two given bands.

� Formant 1, 2, and 3 relative energy, as well as the
ratio of the energy of the spectral harmonic peak at
the first, second, third formant’s centre frequency to
the energy of the spectral peak at F0.

� Harmonic difference H1-H2, ratio of energy of the
first F0 harmonic (H1) to the energy of the second F0

harmonic (H2).
� Harmonic difference H1-A3, ratio of energy of the

first F0 harmonic (H1) to the energy of the highest
harmonic in the third formant range (A3).

All LLD are smoothed over time with a symmetric mov-
ing average filter 3 frames long (for pitch, jitter, and shim-
mer, the smoothing is only performed within voiced
regions, i.e., not smoothing the transitions from 0
(unvoiced) to non 0). Arithmetic mean and coefficient of varia-
tion (standard deviation normalised by the arithmetic
mean) are applied as functionals to all 18 LLD, yielding 36
parameters. To loudness and pitch the following 8 functionals
are additionally applied: 20th, 50th, and 80th percentile, the
range of 20th to 80th percentile, and the mean and standard
deviation of the slope of rising/falling signal parts. All function-
als are applied to voiced regions only (non-zero F0), with
the exception of all the functionals which are applied to
loudness. This gives a total of 52 parameters. Also, the arith-
metic mean of the Alpha Ratio, the Hammarberg Index, and
the spectral slopes from 0-500 Hz and 500-1500 Hz over all
unvoiced segments are included, totalling 56 parameters. In
addition, six temporal features are included:

� the rate of loudness peaks, i.e., the number of loud-
ness peaks per second,

� the mean length and the standard deviation of con-
tinuously voiced regions (F0 > 0),

� the mean length and the standard deviation of
unvoiced regions (F0 ¼ 0; approximating pauses),

� the number of continuous voiced regions per sec-
ond (pseudo syllable rate).

No minimal length is imposed on voiced or unvoiced
regions, i.e., in the extreme case they could be only one
frame long. The Viterbi-based smoothing of the F0 contour,
however, prevents single voiced frames which are, e.g.,
missing by error effectively. In total, 62 parameters are con-
tained in the Geneva Minimalistic Standard Parameter Set.

3.2 Extended Parameter Set

The minimalistic set does not contain any cepstral parame-
ters and only very few dynamic parameters (i.e., it contains
no delta regression coefficients and no difference features;
only the slopes of rising and falling F0 and loudness seg-
ments encapsulate some dynamic information). Further,
especially cepstral parameters have proven highly success-
ful in modelling of affective states, e.g., by [23], [40], [41].
Thus, an extension set to the minimalistic set is proposed
which contains the following seven LLD in addition to the
18 LLD in the minimalistic set:

Spectral (balance/shape/dynamics) parameters:

� MFCC 1-4Mel-Frequency Cepstral Coefficients 1-4.
� Spectral flux difference of the spectra of two conse-

cutive frames.
Frequency related parameters:

� Formant 2-3 bandwidth added for completeness of
Formant 1-3 parameters.

As functionals, the arithmetic mean and the coefficient of var-
iation are applied to all of these seven additional LLD to all3. http://www.audeering.com/research/gemaps
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segments (voiced and unvoiced together), except for the for-
mant bandwidths to which the functionals are applied only
in voiced regions. This adds 14 extra descriptors. Addition-
ally, the arithmetic mean of the spectral flux in unvoiced
regions only, the arithmetic mean and coefficient of varia-
tion of the spectral flux and MFCC 1-4 in voiced regions
only is included. This results in another 11 descriptors.
Additionally the equivalent sound level is included. This
results in 26 extra parameters. In total, when combined with
the Minimalistic Set, the extended Geneva Minimalistic Acous-
tic Parameter Set (eGeMAPS) contains 88 parameters.

4 BASELINE EVALUATION

The proposed minimalistic parameter set and the extended
set are both evaluated for the task of automatic recognition
in binary arousal and binary valence dimensions. The origi-
nal labels (mixed various categories and continuous dimen-
sional) of six standard databases of affective speech were
mapped to binary dimensional labels (Arousal/Valence), as
described in Section 4.2 in order to enable a fair comparison
of performances on these databases.

The original labels (cf. Section 4.1 for details on the data-
bases) are: Levels of Interest (TUM AVIC database), acted
speech emotions in the Geneva Multimodal Emotion Por-
trayals (GEMEP) corpus and the German Berlin Emotional
Speech database (EMO-DB), emotions portrayed in the sing-
ing voice of professional opera singers (GeSiE), valence in
childrens’ speech from the FAU AIBO corpus [42] as used
for the INTERSPEECH 2009 Emotion Challenge [43], as well
as real-life emotions from German talk-show recordings
(Vera-am-Mittag corpus (VAM)). The proposed minimal
sets are compared to five large-scale, brute-forced baseline
acoustic feature sets of the INTERSPEECH 2009 Emotion
Challenge [43] (384 parameters), the INTERSPEECH 2010
Paralinguistic Challenge [36] (1,582 parameters), the INTER-
SPEECH 2011 Speaker State Challenge [44] (4,368 parame-
ters), the INTERSPEECH 2012 Speaker Trait Challenge [45]
(6,125 parameters), and the INTERSPEECH 2013 Computa-
tional Paralingusitics ChallengE (ComParE) [12] set (6,373
parameters), which is also used for the INTERSPEECH 2014
Computational Paralinguistics ChallengE [37].

4.1 Data-Sets

4.1.1 FAU AIBO

FAU AIBO served as the official corpus for the world’s first
international Emotion Challenge [43]. It contains recordings
of children who are interacting with the Sony pet robot
Aibo. It thus contains spontaneous, German speech which is
emotionally coloured. The children were told that the Aibo
robot was responding to their voice commands regarding
directions. However, the robot was in fact controlled by a
human operator, who caused the robot to behaved disobe-
diently sometimes, to provoke strong emotional reactions
from the children. The recordings were performed at two
different schools, referred to as MONT and OHM, from 51
children in total (age 10-13, 21 males, 30 females; approx. 9.2
hours of speech without pauses). The recorded audio was
segmented automatically into speech turns with a speech-
pause threshold of 1 s. The data are labelled for emotional
expression on the word level. As given in [43] five emotion

class labels are used: anger, emphatic, neutral, positive, and
rest. For a two-class valence task, all negative emotions
(Anger and Emphatic—NEG) and all non-negative emo-
tions (Neutral, Positive, and Rest—IDL) are combined.

4.1.2 TUM Audiovisual Interest Corpus (TUM-AVIC)

The TUM Audiovisual Interest Corpus contains audiovisual
recordings of spontaneous affective interactions with non-
restricted spoken content [46]. It was used as data-set for the
INTERSPEECH 2010 Paralinguistics Challenge [36]. In the
set-up, a product presenter walks a subject through a com-
mercial presentation. The language used is English, although
most of the product presenterswere German native speakers.
The subjects weremainly from European andAsian national-
ities. 21 subjects (10 female) were recorded in the corpus.

The LOI is labelled for every sub-turn (which are found by
amanual pause based sub-division of speaker turns) in three
labels ranging from boredom (subject is bored with the con-
versation or the topic or both, she/he is very passive and
does not follow the conversation; also referred to as loi1),
over neutral (she/he follows and participates in the conversa-
tion but it can not be judged, whether she/he is interested in
or indifferent towards the topic; also referred to as loi2) to joy-
ful interaction (showing a strong desire of the subject to talk
and to learn more about the topic, i.e., he/she shows a high
interest in the discussion; also referred to as loi3). For the
evaluations here, all 3,002 phrases (sub-turns) as in [47] are
used—in contrast to the only 996 phrases with high inter-
labeller agreement as, e.g., employed in [46].

4.1.3 Berlin Emotional Speech Database

A very well known and widely used set to test the effective-
ness of automatic emotion classification is the Berlin Emo-
tion Speech Database, also commonly known as EMO-DB.
It was introduced by [48]. It contains sentences spoken in
the emotion categories anger, boredom, disgust, fear, joy,
neutrality, and sadness. The linguistic content is pre-
defined by ten German short sentences, which are emotion-
ally neutral, such as “Der Lappen liegt auf dem Eisschrank”
(The cloth is lying on the fridge.). Ten (five of them female)
professional actors speak 10 sentences in each of the seven
emotional states. While the whole set contains over 700
utterances, in a listening test only 494 phrases are labelled
as a minimum 60 percent naturally sounding and a mini-
mum 80 percent identifiable (with respect to the emotion)
by 20 people. A mean accuracy of 84.3 percent is achieved
for identification of the emotions by the subjects in the lis-
tening experiment on this reduced set of 494 utterances.
This set is used in most other studies related to this database
(cf. [47]), therefore, it is also adopted here.

4.1.4 The Geneva Multimodal Emotion Portrayals

The GEMEP corpus is a collection of 1,260 multimodal emo-
tion expressions enacted by ten French-speaking actors [49].
The list of emotions includes those most frequently encoun-
tered in the literature (e.g., anger, fear, joy, and sadness) as
well as more subtle variations of these categories (e.g., anger
versus irritation, and fear versus anxiety). Specifically, the
12 following emotions are considered, which are distributed
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across all four quadrants of the activation-valence space:
amusement, pride, joy, relief, interest, pleasure, hot anger, panic
fear, despair, irritation (cold anger), anxiety (worry), and sad-
ness (depression). 1,075 instances (approx. 90 per emotion)
are in this set.

The actors portrayed each emotion through three different
verbal contents (one sustained vowel and two pseudo-sen-
tences) and several expression regulation strategies. During
this process the subjects were recorded with three cameras
and onemicrophone. All deviceswere synchronised. In order
to increase realism and spontaneity in the recordings, a pro-
fessional director helped the respective actor to choose a
personal scenario for each emotion—e.g., by recall or mental
imagery—which was personally relevant for the actor. The
actors did not receive any instructions on how the emotions
were to be expressed and they were free to use any
movement and speech techniques they felt were appropriate.

4.1.5 Geneva Singing Voice Emotion Database

This database of singing emotional speech was first intro-
duced by [50]. Here, an extended set of the database is used
(abbreviated as GeSiE). Compared to the original set which
contains three singers, additional recordings of five profes-
sional opera singers have been added following the same
protocol. In total the recordings present are from five male
and three female singers. The singers sung three different
phrases and tone scales in ten emotion categories: neutral
(no expression), panic/fear, passionate love, tense arousal,
animated joy, triumphant pride, anger, sadness, tenderness,
calm/serenity, condescension. Every recording session was
recorded in one continuous stream without pause. The
recordings were afterwards manually split into the phrase
and scale parts. In this way, a set of 300 single instances of
sung speech was obtained. The distribution of the instances
across all emotion classes is almost balanced .

4.1.6 Vera-Am-Mittag

The Vera-Am-Mittag corpus [51] consists of videos extracted
from the German TV show “Vera am Mittag”. In this show,
the host (Vera) moderates discussions between the guests, e.
g., by using questions to guide the discussion. The database

contains 947 emotionally rich, spontaneous speech utteran-
ces sampled from 47 talk show guests. The discussions were
authentic and not scripted and due to the nature of the show
and the selection of guests these discussions rather quite
affective and contain a large variety of highly emotional
states. The topics discussed in the show were mostly per-
sonal issues, like friendship crises, fatherhood questions, or
love affairs. At the time of the recording of the TV show, the
subjects were not aware that the recordings were ever going
to be analysed in scientific studies. The emotion within the
VAM corpus is described in terms of three dimensions: acti-
vation, valence, and dominance/power.

During annotation, raters used an icon-based method
which let them choose an image from an array of five
images for each emotion dimension. Each annotator had to
listen to each utterance (manually segmented prior to the
rating) and then choose an icon for each emotion dimension
that best described the emotion in that utterance. The choice
of these icons was afterwards mapped onto a five category
scale for each dimension evenly distributed across the range
½�1; 1� and averaged over annotators under consideration of
a weighting function that accounts for annotator certainty
as described by [52]. To enable comparative evaluations
here, the continuous valence and activation labels were dis-
cretised to four classes which represent the four quadrants
of the activation-valence space (q1, q2, q3, and q4, corre-
sponding to positive-active, positive-passive, negative-pas-
sive, and negative-active, respectively).

4.2 Common Mapping of Emotions

In order to be able to compare results and feature set perfor-
mance across all the data-sets (cf. [20]), the corpus specific
affect labels were mapped to a common binary arousal and
valence representation (cf. [53]) as suggested by [43], [47]
and [49] (for GEMEP). The mapping for GeSiE was per-
formed in analogy to the procedure used for GEMEP.
Table 1 gives the mapping of emotion categories to binary
activation and valence labels.

4.3 Experimental Protocol

All experiments, except those on AIBO, are performed using
the Leave-One-Speaker(Group)-Out (LOSO) cross-validation.

TABLE 1
Mapping of Data-Set Specific Emotion Categories to Binary Activation Labels (Low/High) and

Binary Valence Labels (Negative/Positive)

Corpus
Activation Valence

low high negative positive

FAU AIBO - NEG IDL
TUM AVIC loi1 loi2, loi3 loi1 loi2, loi3
EMO-DB boredom, disgust, neutral,

sadness
anger, fear, happiness angry, sad happy, neutral, surprise

GEMEP pleasure, relief, interest, irri-
tation, anxiety, sadness

joy, amusement, pride, hot
anger, panic fear, despair

hot anger, panic fear,
despair, irritation,
anxiety, sadness

joy, amusement, pride,
pleasure, relief, interest

GeSiE neutral, tenseness, sadness,
tenderness, calm/serenity,
condescension

fear, passionate love, ani-
mated joy, triumphant
pride, anger

fear, tense arousal, anger,
sadness, condescension

neutral, passionate love,
animated joy, triumphant
pride, tenderness, calm/
serenity

VAM q2, q3 q1, q4 q3, q4 q1, q2

Note, that for FAU AIBO, due to the nature of the original five class labels, only a mapping to binary valence is feasible.
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Thereby, if the number of speakers in the corpus is smaller
or equal to eight (only for GeSiE), data from each speaker is
seen as one cross-validation fold. For more than eight speak-
ers, the speaker IDs are arranged randomly into eight
speaker groups and the data is partitioned into eight folds
according to this grouping. The cross-validation is then per-
formed by training eight different models, each on data from
seven folds, leaving out the first fold for testing for the first
model, the second fold for testing for the second model, and
so on. In this way predictions for the whole data-set are pro-
duced without an overlap in training and testing data. For
FAU AIBO, a two fold cross-validation is used, i.e., training
on OHM and evaluating on MONT and the inverse, i.e.,
training onMONT and evaluating onOHM.

As classifier, the most widely used static classifier in the
field of paralinguistics is chosen: support-vector machines
(SVMs). The SVMs are trained with the sequential minimal
optimisation algorithm as implemented in WEKA [54]. A
range of values for the model complexity C are evaluated,
and results are averaged over the full range in order to
obtain more stable results with respect to the performance
of the parameter set. The range spans 17 C values according
to the following scheme: C1 ¼ 0:000025; C2 ¼ 0:00005; C3 ¼
0:000075; C4 ¼ 0:0001; . . . ; C15 ¼ 0:075; C16 ¼ 0:1; C17 ¼ 0:25.

Each training partition is balanced in order to have the
same number of instances for each class. This is required
for the implementation of SVMs [54] used here to avoid
learning an a priori bias for the majority classes in the
model. Up-sampling is employed for this purpose, i.e., ran-
domly selected instances in the minority classes are dupli-
cated until the same number of instances as in the majority
class is reached.

For SVMs to be numerically efficient, all acoustic
parameters must be normalised to a common value range.
To this end, z-normalisation, i.e., a normalisation to
0 mean and unit variance is performed. Three different
methods for computing (and applying) the normalisation
parameters are investigated in this article: a) computing
the means and variances from the whole training parti-
tion (std), b) computing the means and variances individ-
ually for each speaker (spkstd) similarly to [55], and
c) computing the means and variances individually for
the training and test partitions (stdI).

4.4 Results

We compare the results obtained with the proposed mini-
malistic parameter sets with large state-of-the-art brute-
forced parameter sets from the series of Interspeech
Challenges on Emotion in 2009 [43] (InterSp09), Age and
Gender as well as level of interest in 2010 [36] (InterSp10),
Speaker States in 2011 [44] (InterSp11), Speaker Traits in
2012 [45] (InterSp12), and Computational Paralinguistics in
2013 and 2014 [12], [37] (ComParE).

Table 2 shows the summarised results obtained for
binary arousal and binary valence classification. In order to
eliminate all variables except the parameter set, the results
are averaged over five databases (all, except FAU AIBO)
and the highest nine SVM complexity settings, starting at
C ¼ 0:0025. The decision to average only over the higher
complexity settings was taken because at complexities
lower than this threshold, performance drops significantly
for the smaller feature sets, which biases the averaging.

A high efficiency of the GeMAPS sets is shown by the
average results. The eGeMAPS set performs best for
arousal, reaching almost 80 percent UAR, while it is third
best for valence (close behind the two largest sets-ComParE
and the Interspeech 2012 speaker trait set).

When looking at individual results (Table 3), i.e., when
selecting the best C value for each feature set and database,
the GeMAPS sets are outperformed for the classification of
categories always by the large ComParE or Interspeech 2012
sets, and are outperformed in many cases by the Interspeech
2009-2011 sets for binary arousal and valence classification.
More detailed results are given in plots in the Appendix
(Section 6.2). The eGeMAPS set gives the best result for

TABLE 2
Leave-One-Speaker Out Classification of

Binary Arousal/Valence

Parameter Set average UAR

Arousal Valence

GeMAPS 79.59 65.32
eGeMAPS 79.71 66.44
InterSp09 76.08 64.88
InterSp10 76.50 64.44
InterSp11 76.43 65.96
InterSp12 77.26 66.71
ComParE 78.00 67.17

UAR averaged over all databases (except FAU
AIBO) and 9 highest SVM complexitiesC � 0:0025
(both unweighted averages). Per speaker standard-
isation, instance up-sampling for balancing of train-
ing set.

TABLE 3
Leave-One-Speaker Out Classification of Affective Categories
of Each Database (See Each Database for Description) and

Binary Arousal (A) and Valence (V)

Database Best para- Best UAR [%] with:

meter set best set GeMAPS eGeMAPS

FAU AIBO ComParE 43.14 40.4 41.5
TUM-AVIC InterSp12 69.4 68.8 68.5
EMO-DB ComParE 86.0 80.0 81.1
GEMEP InterSp12 43.6 36.9 38.5
GeSiE ComParE 38.8 29.4 34.0
VAM InterSp12 43.9 38.5 38.9
EMO-DB (A) InterSp09 97.8 95.1 95.3
GEMEP (A) eGeMAPS 84.6 84.5 84.6
GeSiE (A) ComParE 77.2 75.5 75.1
VAM (A) InterSp11 77.4 74.7 75.3
FAU AIBO (V) InterSp10 76.2[5] 73.1 73.4
TUM-AVIC (V) InterSp11 75.9 73.1 73.4
EMO-DB (V) ComParE 86.7 77.1 78.1
GEMEP (V) InterSp10 71.4 64.3 65.6
GeSiE (V) eGeMAPS 67.8 66.5 67.8
VAM (V) eGeMAPS 54.1 53.2 54.1

UAR obtained with best SVM complexity C. Per speaker standardisation,
instance up-sampling for balancing of training set.

4. Best result for FAU AIBO obtained with downsampling (not
upsampling) because the computational complexity of upsampling
with high dimensional parameter sets in relation to the expected accu-
racy gain was too high.
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binary arousal classification on the GEMEP database and for
binary valence classification on the GeSiE database. How-
ever, it can be concluded that the eGeMAPS set is always
superior or equal to the GeMAPS set, which is an indication
that the additional parameters (MFCC and spectral flux in
particular) are important. This is in particular the case for
valence where the average difference between GeMAPS
and eGeMAPS is larger, suggesting the importance of those
parameters for acoustic valence. Yet, also for valence, the
difference between the GeMAPS sets and the large Inter-
speech Challenge sets (esp. ComParE with its 6 373 parame-
ters) is large compared with arousal (except for the
databases GeSiE and VAM—again, the latter not being rep-
resentative for valence; GeSiE contains sung speech, which
is different in nature). Again, this suggests that for valence
further important parameters must be identified in future
work, starting with a deep parameter analysis of the Com-
ParE set, for example.

Although slightly behind the large-scale parameter sets
on average, overall, the GeMAPS sets show remarkably
comparable performance given their minimalistic size of
less than 2 percent of the largest (ComParE) set. In future
studies it should be investigated, whether the proposed
minimalistic sets are able to obtain better generalisation in
cross-database classification experiments.

5 DISCUSSION AND CONCLUSION

One of the essential preconditions for accumulation of
knowledge in science is the agreement on fundamental
methodological procedures, specifically the nature of the
central variables and their measurement. This condition
is hard to achieve, even in a single discipline, let alone in
interdisciplinary endeavors. In consequence, the initiative
described in this article, carried out by leading researchers
in different disciplines interested in the objective measure-
ment of acoustic parameters in affective vocalizations is an
important step in the right direction. It will make the repli-
cation of results across different studies far more convinc-
ing, given the direct comparability of parameters that have
often been labeled differently and often measured in non-
standardized fashion. As the instrument that embodies the
minimal acoustic parameter set is open-source and thus
readily available it could also lead to a higher degree of
sophistication in a complex research domain. It is important
to underline that the GeMAPS has been conceived as an
open, constantly evolving system, encouraging contribu-
tions by the research community both with respect to the
number and definition of specific parameters as well as the
algorithms used to extract them from the speech wave.
From the start, great emphasis has been placed on the strin-
gent evaluation of the contribution of the parameters to
explain variance in empirical corpora and thus it is hoped
that GeMAPS will become a standard measurement tool in
new work on affective speech corpora and voice analysis.

GeMAPS is based on an automatic extraction system
which extracts an acoustic parameter set from an audio
waveform without manual interaction or correction. Not
all parameters which have been found to be relevant or
correlated to certain phenomena can be reliably extracted
automatically though. For example a vowel-based formant

analysis requires a reliable automatic vowel detection and
classification system. Thus, with GeMAPS, only those para-
meters which can be extracted reliably and without supervi-
sion in clean acoustic conditions have been included. The
validation experiments were restricted to binary classifica-
tion experiments in order to allow for best comparability
across databases. The performance in regression tasks might
differ. Although we can believe, that due to the solid theo-
retical foundations of the selected features, the set will yield
good performance also for regression tasks, this should be
investigated in follow up work.

Another potential danger of automatic extraction of a
standard parameter set is that the link to production phe-
nomena may be neglected. In choosing the parameter set
we have taken care to highlight these links and use the
underlying vocal mechanisms as one of the criteria for col-
lection. It is expected that further research will strengthen
these underpinnings and provide new insights. For
instance, it seems reasonable to expect that arousal is associ-
ated with quick phonatory and/or articulatory gestures,
and that a peaceful character results from slow gestures
[56]. In the future, therefore, it would be worthwhile to
expand our understanding of the acoustic output of affec-
tive phonation beyond sound level, pitch and other basic
parameters to the underlying, physiologically relevant
parameters. In this context glottal adduction is a particu-
larly relevant parameter. Increasing adduction has the effect
of lengthening the closed phase and decreasing the ampli-
tude of the transglottal airflow pulses. Acoustically, this
should result in attenuation of the voice source fundamen-
tal, or, more specifically, in reducing the level difference
between the two lowest voice source partials. In the radi-
ated sound this level difference is affected also by the
frequency of the first formant mainly, which may be of sec-
ondary importance to the affective coloring of phonation.
The future development of the GeMAPS could include the
addition of techniques for inverse filtering the acoustic out-
put signal to directly measure voice source parameter (see
e.g., [57]). Such analysis of affective vocalization can allow
determination of physiological correlates of various charac-
teristics of the acoustic output [7], [58] and thus strengthen
our knowledge about the mechanisms whereby emotional
arousal affects voice production.

APPENDIX

6.1 Implementation Details

All the parameters are extracted with the open-source toolkit
openSMILE [59]. Configuration files for the GeMAPS param-
eter sets are included with the latest version of openSMILE
(2.2) and are downloadable from the GeMAPS website5.
These can can be used to extract both the minimalistic and
the extended set “out-of-the-box”. Further, it is also possible
to only extract the LLD without the summarisation over seg-
ments by the functionals. This ensures that teams across the
world, who are working with these standard parameter sets
are able to use a common implementation of these descrip-
tors as a starting point for further analysis, such as statistical

5. http://www.audeering.com/research/gemaps

EYBEN ETAL.: THE GENEVA MINIMALISTIC ACOUSTIC PARAMETER SET (GEMAPS) FOR VOICE RESEARCH ANDAFFECTIVE COMPUTING 197



inspection of corpora, or machine learning experiments for
various affective computing and paralinguistics tasks.

The remainder of this section describes details of the LLD
extraction process. Full details and descriptions of the algo-
rithms are found in the supplementary material provided
with this article.

All input audio samples are scaled to the range ½�1;þ1�
and stored as 32-bit floating point numbers, in order to
work with normalised values regardless of the actual bit-
depth of the inputs. F0, harmonic differences, HNR, jitter,
and shimmer are computed from overlapping windows
which are 60 ms long and 10 ms apart. The frames are multi-
plied with a Gaussian window with s ¼ 0:4 in the time
domain prior to the transformation to the frequency domain
(with an FFT)—for jitter and shimmer, which are computed
in the time domain, no window function is applied. Loud-
ness, spectral slope, spectral energy proportions, Formants,
Harmonics, Hammarberg Index, and Alpha Ratio are com-
puted from 20 ms windows which are 10 ms apart; a Ham-
ming function is applied to these windows. Zero-padding is
applied to all windows to the next power-of-2 (samples)
frame size in order to be able to efficiently perform the FFT.

The fundamental frequency (F0) is computed via sub-
harmonic summation (SHS) in the spectral domain as
described by [60]. Spectral smoothing, spectral peak
enhancement, and auditory weighting are applied as in [60].
15 harmonics are considered, i.e., the spectrum is octave
shift-added 15 times, and a compression factor of 0.85 is
used at each shifting ([60]). F0 ¼ 0 is defined for unvoiced
regions. The voicing probability is determined by the ratio of
the harmonic summation spectrum peak belonging to an F0

candidate and the average amplitude of all harmonic sum-
mation spectrum bins, scaled to a range ½0; 1�. Amaximum of
6 F0 candidates in the range of 55-1000 Hz are selected. On-
line Viterbi post-smoothing is applied to select the most
likely F0 path through all possible candidates. A voicing
probability threshold of 0:7 is then applied to discern voiced
from unvoiced frames. After Viterbi smoothing the F0 range
of 55–1000Hz is enforced by setting all voiced frames outside
the range to unvoiced frames (F0 ¼ 0). The final F0 value is
converted from its linear Hz scale to a logarithmic scale – a
semitone frequency scale starting at 27.5 Hz (semitone 0).
However, as 0 is reserved for unvoiced frames, every value
below semitone 1 (29.136Hz) is clipped to 1.

For computing jitter and shimmer it is required to know
the exact locations and lengths of individual pitch periods.
The SHS algorithm described above delivers only an aver-
age F0 value for a 60 ms window, which can contain
between 4-40 (depending on the actual F0 frequency) pitch
periods in the defined range. In order to determine the exact
lengths of the individual pitch periods, a correlation based
waveform matching algorithm is implemented. The match-
ing algorithm uses the frame average estimate of T0 ¼ 1=F0

found via the SHS algorithm, to limit the range of the period
cross-correlation to improve both the robustness against
noise and computational efficiency. The waveform match-
ing algorithm operates directly on unwindowed 60 ms
audio frames.

Jitter, is computed as the average (over one 60 ms frame)
of the absolute local (period to period) jitter Jppðn0Þ scaled

by the average fundamental period length. For two consecu-
tive pitch periods, with the length of the first period n0 � 1
being T0ðn0 � 1Þ and the length of the second period n0 being
T0ðn0Þ, the absolute period to period jitter, also referred to as
absolute local jitter, is given as follows [61]:

Jppðn0Þ ¼ T0ðn0Þ � T0ðn0 � 1Þj j for n0 > 1: (1)

This definition yields one value for Jpp for every pitch
period, starting with the second one. To obtain a single jitter
value per frame for N 0 local pitch periods n0 ¼ 1 . . .N 0

within one analysis frame, the average local jitter Jpp is

given by:

Jpp ¼ 1

N 0 � 1

XN 0

n0¼2

T0ðn0Þ � T0ðn0 � 1Þj j: (2)

In order to make the jitter value independent of the underly-
ing pitch period length, it is scaled by the average pitch
period length. This yields the average relative jitter, used as
the jitter measure in our parameter set:

Jpp;rel ¼
1

N 0�1

PN 0
n0¼2 T0ðn0Þ � T0ðn0 � 1Þj j
1
N 0

PN 0
n0¼1 T0ðn0Þ

: (3)

Shimmer is computed as average (over on frame) of
the relative peak amplitude differences expressed in dB.
Because the phase of the pitch period segments found by
the waveform matching algorithm is random, the maximum
and minimum amplitude (xmax;n0 and xmin;n0 ) within each
pitch period are identified. By analogy with jitter, the local
period to period shimmer is expressed as:

Sppðn0Þ ¼ Aðn0Þ �Aðn0 � 1Þj j; (4)

with the peak to peak amplitude difference Aðn0Þ ¼
xmax;n0 � xmin;n0 .

As for jitter, the period to period shimmer values are
averaged over each 60 ms frame in order to synchronise the
rate of this descriptor with the constant rate of all other
short-time descriptors. The averaged, relative shimmer is
referred to as Spp;rel. It is expressed as amplitude ratios, i.e.,
the per period amplitude values are normalised to the per
frame average peak amplitude:

Spp;rel ¼
1

N 0�1

PN 0
n0¼2 Sppðn0Þ

1
N

PN 0
n0¼1 Aðn0Þ

: (5)

Loudness is used here as a more perceptually relevant
[62] alternative to the signal energy. In order to approximate
humans’ non-linear perception of sound, an auditory spec-
trum as is applied in the perceptual linear prediction (PLP)
technique [63] is adopted. A non-linear Mel-band spectrum
is constructed by applying 26 triangular filters distributed
equidistant on the Mel-frequency scale from 20-8000 Hz to a
power spectrum computed from a 25 ms frame. An audi-
tory weighting with an equal loudness curve as used by [63]
and originally adopted from [64] is performed. Next, a cubic
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root amplitude compression is performed for each band b of
the equal loudness weighted Mel-band power spectrum
[63]. resulting in a spectrum which is referred to as auditory
spectrum. Loudness is then computed as the sum over all
bands of the auditory spectrum.

The equivalent sound level (LEq) is computed by con-
verting the average of the per-frame RMS energies to a loga-
rithmic (dB) scale.

The HNR gives the energy ratio of the harmonic signal
parts to the noise signal parts in dB. It is estimated from the
short-time autocorrelation function (ACF) (60 ms window)
as the logarithmic ratio of the ACF amplitude at F0 and the
total frame energy, expressed in dB, as given by [61]:

HNRacf;log ¼ 10 log 10

ACFT0

ACF0 �ACFT0

� �
dB: (6)

where ACFT0 is the amplitude of the autocorrelation peak at
the fundamental period (derived from the SHS-based F0

extraction algorithm described above) andACF0 is the zeroth
ACF coefficient (equivalent to the quadratic frame energy).
The logarithmic HNR value is floored to �100 dB to avoid
highly negative and varying values for low-energy noise.

The spectral slope for the bands 0-500Hz and 500-1500Hz
is computed from a logarithmic power spectrum by linear
least squares approximation [29]. Next to the exact spectral
slope, features closely related to the spectral slope can be
used. [29] describes theHammarberg index in this context: It
was defined by [65] as the ratio of the strongest energy peak
in the 0-2 kHz region to the strongest peak in the 2-5 kHz
region. Hammarberg defined a fixed static pivot point of
2 kHz where the low and high frequency regions are
separated. Formally theHammarberg index h is defined as:

h ¼ max
m2k
m¼1XðmÞ

maxMm¼m2kþ1XðmÞ ; (7)

withXðmÞ being amagnitude spectrumwith binsm ¼ 1::M,
and where m2k is the highest spectral bin index where
f � 2 kHz is still true. According to more recent findings,
e.g., [29], it could be beneficial to pick the pivot point dynam-
ically based upon the speaker’s fundamental frequency. This
is, however, on purpose not considered here because it

would break the strictly static nature of all the extraction
methods of all the parameters suggested for this set.

Similar to the Hammarberg index, theAlpha Ratio [66] is
defined as the ratio between the energy in the low frequency
region and the high frequency region. More specifically, it is
the ratio between the summed energy from 50-1000 Hz and
1-5 kHz.

ra ¼
Pm1k

m¼1 XðmÞPM
m¼m1kþ1 XðmÞ ; (8)

wherem1k is the highest spectral bin index where f � 1 kHz
is still true. In applications of emotion recognition from
speech, this parameter most often – like other spectral slope
related parameters – is computed from a logarithmic repre-
sentation of a band-wise long-term average spectrum (LTAS,
cf. [50], [66]). Here, however, in order be able to provide all
parameters on a frame level, the alpha ratio is computed per
frame (20 ms) and then, the functionals mean and variance
are applied to summarise it over segments of interest.

Both formant bandwidth and formant centre frequency
are computed from the roots of Linear Predictor (LP) [67]
coefficient polynomial. The algorithm follows the imple-
mentation of [11].

The formant amplitude is estimated as the amplitude of
the spectral envelope at Fi in relation to the amplitude of
the spectral F0 peak. More precisely, it is computed as the
ratio of the amplitude of the highest F0 harmonic peak in
the range ½0:8 � Fi; 1:2 � Fi� (Fi is the centre frequency of the
first formant) to the amplitude of the F0 spectral peak.

Similarly, harmonic differences or harmonic ratios, are
computed from the amplitudes of F0 harmonic peaks in the
spectrum normalised by the amplitude of the F0 spectral
peak. In the proposed parameter set, in particular the ratios
H1-H2, i.e., the ratio of the first to the second harmonic, and
H1-A3, which is the ratio of the first harmonic to the third for-
mant’s amplitude (as described in the previous paragraph).

Spectral energy proportions are computed from the linear
frequency scale power spectrum by summing the energy of
all bins in the bands 0-500 Hz and 0-1000Hz and normalising
by the total frame energy (sum of all power spectrumbins).

The first four Mel-Frequency Cepstral Coefficients (1-4) are
computed as described by [68] from a 26-band power Mel-
spectrum (20-8000 Hz). In contrast to all other descriptors,
the audio samples are not normalised to ½�1;þ1�, but to the

Fig. 1. Individual results (UAR [%] versus SVM complexity—all 17 val-
ues, see Section 4.3) for the TUM-AVIC database (categories: three lev-
els of interest).

Fig. 2. Individual results (UAR [%] versus SVM complexity—all 17 val-
ues, see Section 4.3) for the EMO-DB database (categories: six basic
emotions and neutral).
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range of a signed 16-bit integer in order to maintain compat-
ibility with [68]. Liftering of the cepstral coefficients with
L ¼ 22 is performed.

The spectral flux Sflux represents a quadratic, normalised
version of the simple spectral difference, i.e., the bin-wise
difference between the spectra of two consecutive speech
frames. The definition of the unnormalised spectral flux for
frame k and magnitude spectraXðmÞ is as follows:

S
ðkÞ
flux ¼

Xmu

m¼ml

XðkÞðmÞ �Xðk�1ÞðmÞ
� �2

; (9)

where ml and mu are the lower and upper bin indices of
the spectral range to be considered for spectral flux compu-
tation. Here, they are set such that the spectral range is set
to 0-5,000 Hz.

6.2 Detailed Results

This section shows detailed results in plots which compare
all investigated acoustic parameter sets for each database
over a range of SVM complexity constants. For details on
the experimental set-up, please refer to Section 4.3.

Results for the TUM-AVIC database are shown in Fig. 1,
for EMO-DB in Fig. 2, for GEMEP in Fig. 3, for GeSiE in
Fig. 4, and for the VAM database in Fig. 5.

It can be seen that the proper tuning of classifier parame-
ters (e.g., SVM complexity) is more crucial for the smaller
sets, and generally higher complexities are preferred. On

the GEMEP and Geneva GeSiE sets the GeMAPS sets are
outperformed by the larger, brute-force sets such as the
ComParE or IS11 set, but on more naturalistic databases,
such as TUM-AVIC and VAM, the results are on par with
the larger sets, at a fraction of the dimensionality.
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